欢迎访问文稿网!

肿瘤转移的动物模型

范文之家 分享 时间: 加入收藏 我要投稿 点赞

肿瘤转移的动物模型

    ◎Janet E.Price

    恶性肿瘤细胞的侵袭转移能力是癌症的关键特征之一[1],转移是大多数被诊断为侵袭性癌患者的主要死亡原因[2]。病理学家早已清楚肿瘤转移不是一个偶然过程,不同类型的肿瘤有不同的转移模式并转移到不同的器官[3]。例如,乳腺癌和肺癌转移器官分布模式的可预测性表明,远处转移灶的发展是播散肿瘤细胞与转移位点间相互作用的结果。这实际上就是Stephen Paget在1889年提出的“种子与土壤”假说[4]。一个多世纪以后,科学家们一直在研究不同类型肿瘤特征转移模式的分子机制。研究基本机制的共同目标是期望发现预防或控制肿瘤转移途径的新线索。

    转移被视为肿瘤最难模拟的表型,因此采用了体外技术进行研究。几种组织培养特征被认为是肿瘤转移潜能的潜在指标,特别是能侵袭穿过基膜[5,6]并在半固体琼脂上生长。由于有了三维组织生物反应器,如利用成骨细胞或肝细胞,能够研究转移细胞在骨和肝中的相互作用[6-8]。但是,这些及其他各种体外实验一般只能预估一个肿瘤细胞在转移过程众多步骤中的一步,因此,动物模型成为分析肿瘤转移分子机制和评估抗转移方案的标准系统。这类研究多数应用啮齿类动物,主要是小鼠(表2-1),原因包括近亲交配和建立免疫缺陷品系的能力,体型较小,便于饲养(与较大品系相比),以及遗传工程小鼠(GEM)模型的发展。

    表2-1 肿瘤转移的啮齿类动物模型

    注: 一些可移植啮齿类肿瘤细胞系常用于肿瘤转移研究。肿瘤转移发生的部位可能依赖于细胞植入的途径。

    把人或动物肿瘤来源的细胞系注入同系或免疫缺陷的宿主动物体内,这是大多数癌转移实验研究的基础。人类和动物肿瘤细胞系的建立通常用于肿瘤转移的研究,可以提供可靠的可重复转移数目和分布模式。这些模型可用于产生肿瘤转移表型的信息,而这正是体外技术所达不到的。例如,通过鉴定基因的表达量,可以分析不同肿瘤在不同器官中的转移倾向性[9-12]

    但是,可移植肿瘤模型应用中的一个不足是很少细胞系能够可靠转移,特别是人肿瘤细胞系。所以从实验动物模型获得的成果大多源于对少数细胞系的研究,而这无法反映出人类肿瘤的异质性。人类肿瘤细胞系异种移植模型应用的另一个限制是需要免疫缺陷动物宿主,缺乏人类细胞的基质成分以及可能会促进其转移进程的免疫细胞[13,14]

    转基因和遗传工程小鼠肿瘤模型可提供多种替代模型,这在一定程度上弥补了移植模型的缺点,特别是在免疫构成系统方面。尽管越来越多成熟的基因突变体被导入到转化细胞或基质细胞中,导致很可能越来越多的GEM被运用到肿瘤转移研究中,但并非所有的GEM都适用。组织移植用于研究物种特异性的肿瘤-基质间的相互关系,以克服适当的基质相互关系的不足。利用传统移植细胞系和GEM模型,不断设计开发新的肿瘤转移模型,将会成为研究肿瘤转移分子机制和检测抗肿瘤转移治疗的临床前模型的新资源。

    2.1.1 同源性肿瘤模型

    近亲杂交系的啮齿动物已成为大量肿瘤研究的基础。近交系小鼠的发展和引入是20世纪早期始于美国,由此产生了用于研究自发性肿瘤产生和发展定性清楚的品系,并充当移植肿瘤受体[23,24]。由近亲杂交的实验鼠肿瘤或由诱导癌变建立的可移植细胞系已被证明在转移研究中极为有用。表2-1列出几个被广泛应用于肿瘤转移研究的细胞系。很多肿瘤转移病理生物学基本原理都是应用这些或其他定性清楚的可移植肿瘤细胞系的实验研究所得到的[25,26,33,35]

    转基因GEM模型的引入拓宽了研究特定基因在肿瘤起始和发展过程中作用的思路[15]。据报道已有模拟不同人类肿瘤的GEM模型,这些模型在有免疫活性的动物中可以产生肿瘤,这一特点优于异种移植模型。肿瘤靶向小鼠模型可能成为未来临床前期筛选治疗新策略的有价值工具[15,22]。有些(但不是所有的)GEM癌症模型显示了稳定的重复性好的肿瘤转移进展过程[16,17,41-43]。其中一个著名例子就是MMTV-多腺瘤病毒中央T抗原(Py Vmt)模型。这个模型的小鼠产生潜伏期相对较短的多病灶乳腺癌,并伴随肺和淋巴结的转移[44]。此模型已在多项研究中被应用,如用于鉴定可以促进或改变肿瘤转移表型的基因[45]。例如,将MMTV-Py Vmt鼠与Rhoc缺陷动物杂交,证明Rhoc的表达不是肿瘤形成的必要条件,却是肿瘤转移所需要的[46]。将MMTV-Py Vmt鼠与27种不同近亲杂交系鼠杂交,鉴定出13种品系,这些品系的F1代对肿瘤转移负荷有显著的抑制作用,证明在这些品系中有肿瘤转移遗传修饰的存在[47]。这导致了Sipa多态性的识别。Sipa是一个作为转移调节子的信号转导因子[48]

    在GEM模型中引入可诱导的或条件性启动子可以帮助确定肿瘤进展和转移的机制[16]。多西环素(强力霉素)诱导的鼠乳腺肿瘤Wnt转基因模型证明了肿瘤的生长和转移依赖Wnt通路的持续信号转导。野生型p53的一个等位基因缺失可将肿瘤进展变为Wnt非依赖型,并且利于其在没有多西环素的条件下生长[49]

    由于育种过程复杂、肿瘤潜伏期的过长或多变以及进展到转移所需的时间明显不同等原因,不是所有的GEM模型都适合临床前期研究。肿瘤的多发性可能也会限制转基因鼠在临床前期或肿瘤转移表型研究中的应用,因为在有明显转移之前由于原发肿瘤负荷过大,小鼠有可能需要被安乐死。克服这个问题的一个方法是将GEM肿瘤移植到同源的非转基因鼠体内,这可以产生一组年龄相同、有类似肿瘤负荷的动物模型。在几种MMTV来源乳腺癌GEM模型中,移植肿瘤的转移发生率与供体鼠大体一致[50]

    与传统小鼠移植肿瘤一样,肿瘤GEM模型的另外一个缺陷是这些模型通常不能模拟人类相应肿瘤的转移模式。例如,小鼠乳腺肿瘤模型通常转移至肺和淋巴结,罕有报道转移至其他内脏、脑或骨等,而这些是人类乳腺癌的常见转移位点[45,51]

    2.1.2 异种移植模型

    许多免疫缺陷品系可供异种移植研究,其中无胸腺鼠(又称“裸鼠”)和重症联合免疫缺陷(SCID)鼠的应用最为广泛。另外的突变品系,例如自然杀伤(NK)细胞活性降低的beige小鼠,或缺少成熟B、T细胞的重组活化基因-2 (RAG-2)缺陷鼠,可能与裸鼠和SCID鼠有交叉背景。有些研究还应用亚致死量X线照射、用化疗药物处理,或用唾液酸基缺乏的GM1抗体消耗NK细胞活性来抑制残余的免疫功能[10,52,53]。不同品系免疫缺陷鼠体内肿瘤生长和转移的结果也有差异,有些(但不是所有)研究发现在严重免疫功能不全的动物中肿瘤生长或转移增强[54-57]。显然,成功利用免疫缺陷鼠来进行人类异种移植的研究需要有特定的无病原体屏障设施,并且应严格遵守动物饲养守则。

    对将人类肿瘤注射到免疫缺陷小鼠体内的早期热情受到某种程度影响,因为并不是所有的肿瘤样本或细胞系皮下(sc)注射后都能生长,更不用说转移了[58,59]。经过证明的可以提高肿瘤接受率和转移率的方法是将细胞注射或移植入恰当的解剖组织内,即所谓的原位注射(原位模型在人类癌症转移中的应用将在后面部分详细介绍)。人类肿瘤样本异种移植的成功率也取决于肿瘤类型。据报道,黑色素瘤、肉瘤以及结肠癌样本有相对较高的成功率,而乳腺癌和前列腺癌样本成功率不超过10%[60]。也就是说,生长并在某些情况下转移的肿瘤样本确实具有更多侵袭性表型[61,62]

    另外一个可能影响异种移植新鲜肿瘤样本成功率的因素是,从样本中分离出的细胞是肿瘤细胞和基质细胞的混合体,其中仅小部分细胞在植入免疫缺陷小鼠后有生长能力。从新鲜肿瘤样本中分离出来的表达公认干细胞标记的细胞群,如结肠癌CD133+和乳腺癌CD44+CD24-/low细胞,这些筛选出来的细胞群比未筛选的细胞群在免疫缺陷小鼠中具有更高的成瘤潜能[52,53]。将从神经胶质瘤和成神经管细胞瘤中分离的CD133+细胞,分别原位移植入鼠的小脑和大脑,通过体内反复移植,发现这种方法可有效地保留CD133+肿瘤亚群[63]

    2.1.3 调节肿瘤生长和转移的基质相互作用

    非原位移植肿瘤模型(特别是人类肿瘤异种移植)的一个不足是其缺乏源于适当组织所产生的肿瘤微环境的基质成分[64],加入活性基质细胞和癌相关成纤维细胞已被用于增强人类肿瘤细胞系的接受和生长[65]。将肿瘤细胞与基质胶(一种基底膜成分的混合物)共同注射可以提高肿瘤接受率并增强肿瘤生长率[56,66]。加入间质细胞和基质蛋白可能刺激局部释放出细胞因子和对血管生成有促进作用的因子,从而促进肿瘤生长[67]。骨髓来源的间充质干细胞被募集到移植肿瘤的基质[68],可促进人类异种移植肿瘤的生长和转移表型。人类乳腺癌SCID鼠模型中的转移增强依赖于癌细胞中CCR5趋化因子受体应答CCL5的信号,CCL5由共注射的间充质干细胞分泌[69]

    基质来源的因子对恶性进展的作用可以通过耗尽或者基因敲除方法除去基质因子的GEM模型来阐述,这个策略用来证明宿主来源的基质金属蛋白酶9(MMP-9)在胰腺癌和卵巢癌血管生成和成瘤方面发挥了显著的作用[70,71]。将相同数量的癌细胞分别注射入野生型和MMP-9缺陷型小鼠中,导致在缺陷宿主中肿瘤生长减少。

    将野生型骨髓过继性转入MMP-9缺陷型小鼠后,可部分逆转受抑制的肿瘤生长,表明骨髓来源的细胞可影响肿瘤微环境[70]。发现EL-4淋巴瘤和B16黑色素瘤细胞在缺乏金属蛋白酶组织抑制剂3(TIMP-3)的鼠中更容易转移,而且在发生转移的器官中pro-MMP-2表达更高,因此认为TIMP-3是转移灶播散的调节因子[72]。在另外一个例子中,将前列腺癌细胞移植入鼠的额骨造成骨质溶解,MMP-7缺陷型小鼠的这一现象要比野生型鼠减弱一些。这个研究在RANKL激活中涉及MMP-7,需要破骨细胞介导的骨再吸收,并驱使在骨溶性转移中骨受损的“恶性循环”[73]。GEM模型,创造了具有肿瘤和组织微环境改变的动物,可以与转基因肿瘤模型或传统肿瘤移植模型相结合,很有可能提供对转移病理学更深层次的见解。

    2.1.4 研究肿瘤-基质相互作用的SCID-人组织模型

    另外一种用于克服某些人类肿瘤生长和转移率低的问题,并可以提供物种特异性组织相互作用模型的方法是,将人类靶器官组织植入免疫缺陷小鼠[55,74]。人类胚胎肺和骨髓碎片被移植入SCID鼠,再将人类小细胞肺癌细胞经静脉注射给鼠,发现肿瘤细胞在这些组织中优先定植,而不再是鼠的普通肺和骨髓[20]。将胚胎或成人的骨碎片植入SCID鼠,静脉注射的前列腺癌细胞都可以在其上面定植,证明转移灶器官亲嗜性是前列腺癌在人体内播散的好发位点之一。

    为了比较人类黑色素瘤细胞在植入人类皮肤的SCID鼠和普通小鼠中的生长状况,将人类皮肤植入SCID鼠后,黑色素瘤以其特有的方式生长和侵袭,并且有些转移到了远处器官。相反,相同的细胞在普通小鼠仅形成非侵袭性肿瘤[76]。这些模型对研究人类肿瘤细胞在不同的人类组织微环境中的生存和转移情况是有帮助的。

    2.1.5 原位移植模型

    将肿瘤细胞注射入适当受体动物相同的正常器官或组织,一般称作原位移植。这种模型已经成功地用于促进肿瘤接受和生长率,并可提高转移率。原位模型用于许多不同的人类肿瘤,如表2-2列举的许多例子,同样也适用于啮齿类动物肿瘤。原位移植方法的基本原理是,肿瘤的生长和发展受到自分泌、旁分泌和内分泌通路介导的恶性细胞与其周围宿主组织间相互作用的影响[2]。将肿瘤植入原位和异位位点的比较,发现前者血管化状态良好或具有组织学形态特点,且更容易发生局部淋巴结转移。对于人乳腺癌和啮齿类动物乳腺肿瘤来说,合适的移植位点是乳房脂肪垫。有很多文献阐述脂肪垫对正常、瘤前和恶性表皮细胞的生长具有调节作用[91,92]。有很多例子应用原位模型分离出更具侵袭性和转移性的人类癌变异体,并筛选出了转移亚群,可用于进一步分析恶性表型和研究临床治疗[46,79,85]

    表2-2 人类肿瘤生长和转移的原位模型

    注: 人类肿瘤细胞通过不同途径注射到适当器官或部位,制备原位移植模型,以及可发现转移灶的部位。

    将从患者肿瘤样本中直接取得或从免疫缺陷小鼠连续传代肿瘤中取得的肿瘤组织碎片进行原位移植,称为外科手术移植(surgical orthotopic implantation,SOI)。由于组织碎片中的基质结构允许对肿瘤生长和转移至关重要基因的持续表达,因此可以对很多不同人类肿瘤转移潜能进行保真性复制[93]。相反,当肿瘤细胞与基质分离并在组织培养中增殖,那么就会失去肿瘤-基质相互作用,而且转移促进基因的表达也会降低甚至沉默。肿瘤-基质相互关系影响恶性表型的概念也适用于将细胞移植入原位和异位位点。临床研究和实验研究已报道转移灶在不同器官中的化疗敏感性不同[94,95]。虽然这可能是肿瘤异质性所致,但组织微环境的影响不能排除。有人在体内评估鼠乳腺肿瘤细胞对不同化疗药物的敏感性,比较皮下瘤与骨髓、脾、肺、肝和脑肿瘤细胞的反应。一般来说,皮下瘤对烷化剂敏感,而肝和脑的病变对烷化剂则不那么敏感。在骨髓中生长的细胞显示对不同药物的不同敏感性,加入抗血管药物可增强环磷酰胺杀伤微环境的效果[96]。因此,组织微环境可以影响转移灶细胞对化疗药物的敏感性,也可以通过调节肿瘤细胞的血管生成影响治疗效果。

    分子生物学和微量分析技术的发展使研究肿瘤-基质相互作用的分子基础成为可能。芯片分析被用于比较在体外和体内(皮下瘤或原位移植瘤、颅内肿瘤)生长的人类胶质瘤的基因表达谱。在体外或体内皮下瘤生长的两种胶质瘤细胞显示出不同的基因表达谱,但是原位生长的肿瘤其表达谱非常相似,证明肿瘤表型确实受肿瘤微环境的调节[97]。物种特异性表达芯片的出现,可在同一样品中分析人类转移性肿瘤细胞和小鼠基质成分的基因表达,并且可以确定促进转移过程的肿瘤和宿主间的相互作用[98]

    有些小鼠或人类肿瘤模型,外科切除原发瘤可给予转移灶更长的生长时间;小鼠在发现转移灶之前有可能由于局部肿瘤进展而死亡[79,85]。这个实验设计适合临床前期研究检测针对微转移灶的治疗方法[99]。但仅限于相对容易切除原发瘤的模型,如生长在脂肪垫上的乳腺癌或生长在真皮层的黑色素瘤,并不适用于其他原位模型,如前列腺癌或肺癌。

    很多小鼠模型的不足是,从原位移植肿瘤的转移模式并不总是准确地反映其相应人类肿瘤的转移模式。从生长在适当原发位点的肿瘤转移至骨和脑的现象,在啮齿类模型中并不常见,虽然有报道称原位移植小鼠和人的黑色素瘤模型可发生脑转移[27,85,100]。从不同的路径注射肿瘤细胞悬浮液可以用来使细胞进入不同的器官(表2-3)。对于这些注入路径,转移灶发展最可能的位点是癌细胞被捕获的第一个毛细血管床,因此这种途径可以用来研究器官特异性转移。例如,注入门静脉或脾的细胞可以向肝转移[34,105]

    原位注射可以模仿原发肿瘤生长和局部侵袭,以及渗入淋巴液和血流中,而经过不同的路径注射肿瘤细胞可以模仿转移过程的后续步骤。例如,将肿瘤细胞直接注射到颈内动脉可以导致实验性脑转移,与原发癌的生长模式类同[10]。将细胞直接注射入左心室,可导致全身播散。这个方法已成功地应用于起始骨和脑转移[106-108]。将细胞直接注射到小鼠的骨,通常是胫骨和股骨,作为一个骨微环境中肿瘤-基质相互作用模型,可导致日益严重的肿瘤损害症状。如乳腺癌和肾细胞癌细胞系可以产生明显的骨质溶解,而前列腺癌细胞系则产生成骨细胞损伤[104,109]

    表2-3 制备实验肿瘤转移模型的不同肿瘤细胞注射路径

    2.1.6 体内成像

    体内成像技术在应用啮齿类动物研究肿瘤转移中具有显著优势。对于许多已成熟的原位移植模型,荧光蛋白的应用可以帮助检测局部肿瘤生长、血管生成、侵袭和转移[110]。例如,应用报告荧光蛋白〔如绿色荧光蛋白(GFP)〕稳定转染到移植的肿瘤细胞系中,可以在各个器官位点上检测肿瘤和转移灶[102,108,111]。图2-1为左心室注入细胞21天后,检测到表达GFP的MDA-MB-435癌细胞在裸鼠脑中血管周围生长[111]。除了植入荧光标记的肿瘤细胞之外,表达荧光团的转基因肿瘤或受体鼠中不同类型的正常细胞都可以提供多光点显微镜成像的肿瘤-基质相互作用系统,例如,有荧光表皮细胞的Tie2-GFP鼠及有荧光巨噬细胞和粒细胞的c-fms-GFP鼠[112]

    图2-1 左心室注射表达GFP的MDA-MB-435细胞21天后,裸鼠脑中转移细胞在血管周围生长。在处死小鼠及使用激光共聚焦扫描显微镜对其大脑进行曝光成像之前1小时,将罗丹明-白蛋白注射入小鼠(图来源: Int JCancer,2007111])。

    萤火虫荧光霉素是另一个通过可稳定表达生物发光基因用于监测移植肿瘤生长和转移的报告蛋白。检测肿瘤的荧光可用于发现动物中用肉眼不易察觉的转移灶(图2-2),同时监测肿瘤生长和对治疗的反应[11,100,113]。应用生物发光可无创检测肿瘤的大小,提高了如膀胱癌、前列腺癌和胰腺癌等多种原位移植模型的精确度和敏感度[114,115]。生物发光报告基因可以与转基因肿瘤模型结合。例如,将在前列腺表达荧光霉素的鼠与转基因前列腺癌小鼠(TRAMP)杂交,通过生物发光来检测肿瘤和转移灶的发展[116]。报告基因已成功地用于可移植肿瘤系,但需要稳定表达株。有报道称,移植入体内后GFP表达量下调,这可能是因为移植的不稳定或翻译沉默[102,117]。具有报告基因的肿瘤移植到具有免疫活性的鼠中,可以导致免疫监测及成瘤性和转移潜能的丧失[118]。这可能依赖于细胞系统、报告基因结构和鼠的品系。尽管有很多在具有免疫活性的动物中成功应用报告基因的报道,然而在报告基因导入可移植肿瘤细胞系后,其成瘤性和转移能力的保留应得到证实。

    图2-2 在裸鼠肺、肾上腺和脑的转移灶中注入表达荧光霉素的MDA-MB-435人类癌细胞,检测其生物发光

    注: 细胞被注射到乳腺脂肪垫,当肿瘤直径达到1cm时被移除。6周后,在有明显的转移性疾病前注射底物荧光霉素,并用Xenogen IVIS成像,证明无创影像学技术的实用性。

    不同的成像技术,如磁共振成像(MRI)、正电子发射X线断层显像(PET)、CT和超声波,这些技术和设备正在越来越频繁地应用于小型动物[14]。然而,这些设备和技术支持的费用和渠道可能会对其使用产生限制。隔离设施内设备的实用性也是需要的,特别是用于研究免疫缺陷型小鼠,或给同一动物做重复成像的时间顺序实验。

    2.1.7 结论

    肿瘤转移的发病机制包括恶性肿瘤和正常细胞间复杂的相互作用。采用适当的设计和选择合适的技术,肿瘤生长和转移的动物模型可以提供大量信息,这是组织培养模型所不能模仿的。如今,可用的肿瘤模型越来越多,用于检测肿瘤发展的新技术也在开发,选择应用哪个模型需要取决于假说的验证。GEM模型的引入提供了直接阐述组织微环境影响的机会,也可以阐述特定基因在转移灶发展中的作用。随着日益发展的新疗法目标,即组织微环境和肿瘤脉管系统,有效的动物模型对于检测转移性疾病的控制或预防药物的效果非常重要。

    (乔鹏译,钦伦秀审校)

    参考文献

    [1]Hanahan D. et al. The hallmarks of cancer. Cell,2000,100: 57.

    [2]Fidler IJ. Critical determinants of metastasis. Semin Cancer Biol,2002,12: 89.

    [3]Weiss L. Mechanisms of metastatic patterns. Orlando: Principles of Metastasis. Academic Press,1985: 200.

    [4]Paget S. The distribution of secondary growths in cancer of the breast. Lancet,1889,i: 571.

    [5]Albini AP,et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res,1987,47: 3239.

    [6]Li L,et al. Correlation of growth capacity of human tumor cells in hard agarose with their in vivo proliferative capacity at specific metastatic sites. J Natl Cancer Inst,1989,81: 1406.

    [7]Yates CC,et al. Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. Br J Cancer,2007,96: 1246.

    [8]Dhurjati R,et al. Metastatic breast cancer cells colonize and degrade three-dimensional osteoblastic tissue in vitro. Clin Exp Metastasis,2008,25: 741.

    [9]Eckhardt BL,et al. Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellularmatrix. Mol Cancer Res,2005,3: 1.

    [10]Kakiuchi S,et al. Genome-wide analysis of organ-preferentialmetastasis of human small cell lung cancer in mice. Mol CancerRes,2003,I: 485.

    [11]Kang Y,et al. A multigenic program mediating breast cancermetastasis to bone. Cancer Cell,2003,3: 537.

    [12]Minn AJ,et al. Genes that mediate breast cancer metastasis tolung. Nature,2005,436: 518.

    [13]Coussens LM, et al. Inflammatory cells and cancer: thinkdifferent. J Exp Med,2001,193: F23.

    [14]Olive KP,et al. The use of targeted mouse models for preclinicaltesting of novel cancer therapeutics. Clin Cancer Res,2006,12: 5277.

    [15]Hanahan D,et al. The origins of oncomice: a history of the firsttransgenic mice genetically engineered to develop cancer. GenesDev,2007,21: 2258.

    [16]Caulin C,et al. An inducible mouse model for skin cancer revealsdistinct roles for gain- and loss-of-function p53 mutations. J Clin9 Invest,2007,117: 1893.

    [17]Tormo D,et al. Rapid growth of invasive metastatic melanoma incarcinogen-treated hepikocyte growth factor /scatter factortransgenicmice carrying an oncogenic CDK4 mutation. Am JPathol,2006,169: 665.

    [18]Gao D,et al. Endothelial progenitor cells control the angiogenicswitch in mouse lung metastasis. Science,2008,319: 195.

    [19]Diao D,et al. Hypoxia-inducible factor-lα is a key regulator ofmetastasis in a transgenic model of cancer initiation andprogression. Cancer Res,2007,67: 563.

    [20]Shtivelman E,et al. Species-specific metastasis of human tumorcells in the severe combined immunodeficiency mouse engraftedwith human tissue. Proc Natl Acad Sci USA,1995,92: 4661.

    [21]Nemeth JA,et al. Severe combined immunodeficient-hu model ofhuman prostate cancer metastasis to human bone. Cancer Res,1999,59: 1987.

    [22]Talmadge JE, et al. Murine models to evaluate novel andconventional therapeutic strategies for cancer. Am J Pathol,2007,170: 793.

    [23]Strong LC. The origin of some inbred mice. Cancer Res,1942,2:531.

    [24]Festing MFW. The history of inbred strains. http: / /www.isogenic info. 2006.

    [25]Hart IR,et al. Role of organ selectivity in the determination ofmetastatic patterns of B16 melanoma. Cancer Res, 1980,40: 2281.

    [26]Poste G,et al. Interactions among polyclonal subpopulations affectstability of the metastatic phenotype in polyclonal populations ofB16 melanoma cells. Proc Natl AcadSci USA,1981,78: 6226.

    [27]Cranmer LD, et al. Rodent models of brain metastasis inmelanoma. Melanoma Res,2005,15: 325.

    [28]Rebhun RB,et al. Impact of sentinel lymphadenectomy onsurvival in a murine model of melanoma. Clin Exp Metastasis,2008,25: 191.

    [29]Park JM,et al. Unmasking immunosurveillance against a syngeniccolon cancer by elimination of CD4 + NKT regulatory cells and IL-13. Int J Cancer,2005,114: 80.

    [30]Hiraoka K,et al. Therapeutic efficacy of replication-competentretrovirus vector-mediated suicide gene therapy in a multifocalcolorectal cancer metastasis model. Cancer Res,2007,67: 5345.

    [31]Fidler IJ,et al. Demonstration of multiple phenotypic diversity in amurine melanoma of recent origin. J Natl Cancer Inst,1981,67: 947.

    [32]Owen-Schaub LB,et al. Fas and fas ligand interactions suppressmelanoma lung metastasis. J Exp Med,1998,188: 1717.

    [33]Holmgren L,et al. Dormancy of micrometastases: balancedproliferation and apoptosis in the presence of angiogenesissuppression. Net Med,1995,1: 149.

    [34]Long L,et al. Enhanced invasion and liver colonization by lungcarcinoma cells overexpressing the type I insulin-like growth factorreceptor. Exp Cell Res,1998,238: 116.

    [35]Miller FR,et al. Characterization of metastatic heterogeneityamong subpopulations of a single mouse mammary tumor:heterogeneity in phenotypic stability. Invasion Metastasis,1983,3: 22.

    [36]Aslakson CJ,et al. Selective events in the metastatic processdefined by analysis of the sequential dissemination ofsubpopulations of a mouse mammary tumor. Cancer Res,1992,52: 1399.

    [37]Isaacs JT,et al. Establishment and characterization of sevenDunning rat prostatic cancer cell lines and their use in developingmethods for predicting metastatic abilities of prostate cancers.Prostate,1986,9: 261.

    [38]Rubenstein M,et al. Orthotopic placement of the Dunning R3327AT-3 prostate tumor in the Copenhagen X Fischer rat. Prostate,1995,27: 148.

    [39]Welch DR. Technical considerations for studying cancer metastasisin vivo. Clin Exp Metastasis,1997,15: 272.

    [40]Kiley SC,et al. Protein kinase C δ involvement in mammary tumorcell metastasis. Cancer Res,1999,59: 3230.

    [41]Morton JP,et al. Trp53 deletion stimulates the formation ofmetastatic pancreatic tumors. Am J Pathol,2008,172: 1081.

    [42]Masumori N,et al. A probasin-large T antigen transgenic mouseline develops prostate adenocarcinoma and neuroendocrinecarcinoma with metastatic potential. Cancer Res,2001,61: 2239.

    [43]Gingrich IR,et al. Metastatic prostate cancer in a transgenicmouse. Cancer Res,1996,56: 4096.

    [44]Guy CT,et al. Induction of mammary tumors by expression ofpolyomavirus middle T oncogene: a transgenic mouse model formetastatic disease. Mol Cell Biol,1992,12: 954.

    [45]Jonkers J,et al. Modeling metastatic breast cancer in mice. JMammary Gland Biol Neoplasia,2007,12: 191.

    [46]Hakem A,et al. RhoC is dispensable for embryogenesis and tumorinitiation but essential for metastasis. Genes Dev, 2005,19: 1974.

    [47]Lifsted T,et al. Identification of inbred mouse strains harboringgenetic modifiers of mammary tumor age of onset and metastatic.progression. Int J Cancer,1998,77: 640.

    [48]Crawford NPS,et al. Germline polymorphisms in SIPA1 areassociated with metastasis and other indicators of poor prognosis inbreast cancer. Breast Cancer Res,2006,8: R16.

    [49]Gunther EJ,et al. Impact of p53 loss on reversal and recurrence ofconditional Wnt-induced tumorigenesis. Genes Dev, 2003,17: 488.

    [50]Varticovski L, et al. Accelerated preclinical testing usingtransplanted tumors from genetically engineered mouse breastcancer models. Clin Cancer Res,2007,13: 2168.

    [51]Lelekakis M,et al. A novel orthotopic model of breast cancermetastasis to bone. Clin Exp Metastasis,1999,17: 163.

    [52]Al-Hajj M,et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA,2003,100: 3983.

    [53]O'Brien CA,et al. A human colon cancer cell capable of initiatingtumour growth in immunodeficient mice. Nature,2007,445: 106.

    [54]Clarke P. Human breast cancer cell line xenografts as models ofbreast cancer - the immunobiologies of recipient mice and thecharacteristics of several tumorigenic cell lines. Breast Cancer ResTreat,1996,39: 69.

    [55]Bankert RB,et al. SCID mouse models to study human cancerpathogenesis and approaches to therapy: potential,limitations,and future directions. Front Biosci,2002,7: c44.

    [56]Price JE. Metastasis from human breast cancer cell lines. BreastCancer Res Treat,1996,39: 93.

    [57]Xie X,et al. Comparative studies between nude and SCID mice onthe growth and metastatic behavior of xenografted human tumors.Clin Exp Metastasis,1992,10: 201.

    [58]Fogh J,et al. One hundred and twenty-seven cultured humantumor cell lines producing tumors in nude mice. J Natl CancerInst,1977,59: 221.

    [59]Sharkey FE. et al. Metastasis of human tumors in athymic nudemice. Int J Cancer,1979,24: 733.

    [60]Fidler IJ. Rationale and methods for the use of nude mice to studythe biology and therapy of human cancer metastases. CancerMetastasis Rev,1986,5: 29.

    [61]Jessup JM, et al. Metastatic potential of human colorectalcarcinomas implanted into nude mice: prediction of clinicaloutcome in patients operated on for cure. Cancer Res,1989,49: 6906.

    [62]Marangoni E,et al. A new model of patient tumor-derived breastcancer xenografts for preclinical assays. Clin Cancer Res,2007,13: 3989.

    [63]Shu Q,et al. Direct orthotopic transplantation of fresh surgicalspecimen preserves CD133 + tumor cells in clinically relevantmouse models of medulloblastoma and glioma. Stem Cells,2008,26: 1414.

    [64]Frese KK,et al. Maximizing mouse cancer models. Nat RevCancer,2007,7: 645.[65]Picard O,et al. Fibroblast-dependent tumorigeniclty of cells innude mice: implication for implantation of metastases. CancerRes,1986,46: 3290.

    [66]Fridman R,et al. Reconstituted basement membrane ( Matrigel)and laminin can enhance the tumorigenicity and the drug resistanceof small cell lung cancer cell lines. Proc Natl Acad Sci USA,1990,87: 6698.

    [67]Tlsty TD, et al. Tumor stroma and regulation of cancerdevelopment. Annu Rev Pathol Mech Dis,2006,1: 119.

    [68]Klopp AH,et al. Tumor irradiation increases the recruitment ofcirculating mesenchymal stem cells into the tumormicroenvironment. Cancer Res,2007,67: 11687.

    [69]Karnoub AE,et al. Mesenchymal stem cells within tumour stromapromote breast cancer metastasis. Nature,2007,449: 557.

    [70]Huang S,et al. Contributions of stromal metalloproteinase-9 toangiogenesis and growth of human ovarian carcinoma in mice. JNatl Cancer Inst,2002,94: 1134.

    [71]Nakamura T,et al. Stromal metalloproteinase-9 is essential toangiogenesis and progressive growth of orthotopic human pancreaticin parabiont nude mice. Neoplasia,2007,9: 979.

    [72]Cruz-Munoz W,et al. Enhanced metastatic dissemination tomultiple organs by melanoma and lymphoma cells in timp-3-/-mice. Oncogene,2006,25: 6489.

    [73]Lynch CC,et al. MMP-7 promotes prostate cancer-inducedosteolysis via the solubilization of RANKL. Cancer Cell,2005,7:496.

    [74]Wang M,et al. A severe combined immunodeficient-hu in vivomouse model of human primary mantle cell lymphoma. Clin CancerRes,2008,14: 2154.

    [75]Yonou H,et al. Establishment of a novel species and tissuespecificmetastasis model of human prostate cancer in humanizednon-obese diabetic /severe combined immune deficient miceengrafted with human adult lung and bone. Cancer Res,2001,61: 2177

    [76]Juhasz I,et al. Growth and invasion of human melanomas inhuman skin grafted to immunodeficient mice. Am J Pathol,1993,143: 528.[77]Black PC,et al. Bladder cancer angiogenesis and metastasistranslationfrom murine model to clinical trial. Cancer MetastasisRev,2007,26: 623.

    [78]Price JE,et al. Studies of human breast cancer metastasis usingnude mice. Cancer Metastasis Rev,1990,8: 285.

    [79]Chelouche Lev D,et al. Selection of more aggressive variants ofthe GI101A human breast cancer cell line: A model for analyzingthe metastatic phenotype of breast cancer. Clin Exp Metastasis,2003,20: 515.

    [80]Morikawa K,et al. Influence of organ environment on the growth,selection,and metastasis of human colon carcinoma cells in nudemice. Cancer Res,1988,48: 6863.

    [81]Cespedes MV,et al. Orthotopic microinjection of human coloncancer cells in nude mice induces tumor foci in all clinicallyrelevant metastatic sites. Am J Pathol,2007,170: 1077.

    [82]Yamaguchi K,et al. Liver metastatic model for human gastriccancer established by orthotopic tumor cell implantation. World JSurg,2001,25: 131.

    [83]Onn A,et al. Development of an orthotopic model to study thebiology and therapy of primary human lung cancer iri nude mice.Clin Cancer Res,2003,9: 5532.

    [84]Kozaki K,et al. Establishment and characterization of a humanlung cancer cell line NCI-H460-LNM35 with consistentlymphagenous metastasis via both subcutaneous and orthotopicpropagation. Cancer Res,2000,60: 2535.

    [85]Cruz-Munoz W,et al. Development of a preclinical model ofspontaneous human melanoma central nervous system metastasis.Cancer Res,2008,68: 4500.

    [86]Bruns CJ,et al. In vivo selection and characterization of metastaticvariants from human pancreatic adenocarcinoma by using orthotopicimplantation in nude mice. Neoplasia,1999,1: 50.

    [87]Aives F,et al. An orthotopic model of ductal adenocarcinoma of thepancreas in severe combined immunodeficient mice representing allsteps of the metastatic cascade. Pancreas,2001,23: 227.

    [88]Stephenson RA,et al. Metastatic model for human prostate cancerusing orthotopic implantation in nude mice. J Natl Cancer Inst,1992,84: 951.

    [89]Naito S,et al. In vivo selection of human renal cell carcinomacells with high metastatic potential in nude mice. Clin ExpMetastasis,1989,8: 103.

    [90]Kim S,et al. An orthotopic model of anaplastic thyroid carcinomain athymic nude mice. Clin Cancer Res,2005,11: 1713.

    [91]Lochter A,et al. Involvement of extracellular matrix constituentsin breast cancer. Semin Cancer Biol,1995,6: 165.

    [92]Simian M,et al. The interplay of matrix metalloproteinases,morphogens and growth factors is necessary for branching ofmammary epithelial cells. Development,2001,128: 3117.

    [93]Hoffman RM. Orthotopic metastatic mouse models for anticancerdrug discovery and evaluation: a bridge to the clinic. Invest NewDrug,1999,17: 343.

    [94]Kamby C,et al. The pattern of metastases in human breastcancer. Influence of systemic adjuvant therapy and impact onsurvival. Acta Oncol,1988,27: 715.

    [95]Wilmanns C,et al. Modulation of doxorubicin sensitivity and levelof glycoprotein expression in human colon carcinoma cells byectopic and orthotopic environments in nude mice. Int J Oncol,1993,3: 413.

    [96]Holden SA,et al. Host distribution and response to antitumoralkylating agents of EMT-6 tumor cells from subcutaneous tumorimplants. Cancer Chemother Pharmacol,1997,40: 87.

    [97]Camphausen K,et al. Influence of in vivo growth on humanglioma cell line gene expression: convergent profiles underorthotopic conditions. Proc Natl Acad Sci USA,2005,102: 8287.

    [98]Montel V,et al. Tumor-stromal interactions reciprocally modulategene expression patterns during carcinogenesis and metastasis. IntJ Cancer,2006,119: 251.

    [99]Aggarwal BB,et al. Curcurnin suppresses the paclitaxel-inducedNF-κB pathway in breast cancer cells and inhibits lung metastasisof human breast cancer cells in nude mice. Clin Cancer Res,2005,11: 7490.

    [100]Rosol TJ,et al. Animal models of bone metastasis. Cancer,2003,97: 748.

    [101]Schackert G,et al. Unique patterns of brain metastasis producedby different human carcinomas in athymic nude mice. Int JCancer,1989,44: 892.

    [102]Kim LS,et al. Vascular endothelial growth factor expressionpromotes the growth of breast cancer brain metastases in nudemice. Clin Exp Metastasis,2004,21: 107.

    [103]Yoneda J,et al. Expression of angiogenesis-related genes andprogression of human ovarian carcinomas in nude mice. J NatlCancer Inst,1998,90: 447.

    [104]Weber KL,et al. Blockade of epidermal growth factor receptorsignaling leads to inhibition of renal cell carcinoma growth in thebone of nude mice. Cancer Res,2003,63: 2940.

    [105]Price JE,et al. Organ distribution of experimental metastases of ahuman colorectal carcinoma injected in nude mice. Clin ExpMetastasis,1989,7: 55.

    [106]Verschraegen CF,et al. Specific organ metastases of humanmelanoma cells injected into the arterial circulation of nude mice.Anticancer Res,1991,11: 529.

    [107]Yoneda T,et al. A bone-seeking clone exhibits differentbiological properties from the MDA-MB-231 parental humanbreast cancer cells and a brain-seeking clone in vivo and in vitro.J Bone Miner Res,2001,16: 1486.

    [108]Phadke PA,et al. Kinetics of metastatic breast cancer traffickingin bone. Clin Cancer Res,2006,12: 1431.

    [109]Singh AS,et al. In vivo models of prostate cancer metastasis tobone. J Ural,2005,174: 820.

    [110]Hoffman RM. The multiple uses of fluorescent proteins tovisualize cancer in vivo. Nat Rev Cancer,2005,5: 796.

    [111]Lu W,et al. Pathogenesis and vascular integrity of breast cancerbrain metastasis. Int J Cancer,2007,120: 1023.

    [112]Sidani M,et al. Probing the microenvironmen of mammarytumors using multiphoton microscopy. J Mammary Gland BiolNeoplasia,2006,11: 151.

    [113]Contag CH,et al. Use of reporter genes for optical measurementsof neoplastic disease in vivo. Neoplasia,2000,2: 41.

    [114]Armugam T,et al. Effect of cromolyn on S100P interactions withRAGE and pancreatic cancer growth and invasion in mousemodels. J Natl Cancer Inst,2006,98: 1806.

    [115]Hadaschik BA,et al. Oncolytic vesicular stomatitis viruses arepotent agents for intravesical treatment of high-risk bladdercancer. Cancer Res,2008,68: 4506.

    [116]Hsieh CL,et al. Non-invasive bioluminescent detection ofprostate cancer growth and metastasis in a bigenic transgenicmouse model. Prostate,2007,67: 685.

    [117]Migliaccio AR,et al. Stable and instable transgene integrationsites in the human genome: extinction of the green fluorescentprotein transgene in K562 cells. Gene,2000,256: 197.

    [118]Steinbauer M,et al. GFP-transfected tumor cells are useful inexamining early metastasis in vivo,but immune reaction precludeslong-term tumor development studies in immunocompetent mice.Clin Exp Metastasis,2003,20: 135.

221381
领取福利

微信扫码领取福利

微信扫码分享